LISTSERV mailing list manager LISTSERV 16.0

Help for LATEX-L Archives


LATEX-L Archives

LATEX-L Archives


LATEX-L@LISTSERV.UNI-HEIDELBERG.DE


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

LATEX-L Home

LATEX-L Home

LATEX-L  March 1997

LATEX-L March 1997

Subject:

Re: Mathematical Typography

From:

Johannes Kuester <[log in to unmask]>

Reply-To:

Mailing list for the LaTeX3 project <[log in to unmask]>

Date:

Thu, 27 Mar 1997 12:28:00 +0100

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (145 lines)

Hans Aberg wrote:

> >No, at least most function names shouldn't be typeset upright,
> >whereas e, pi and i (the imaginary unit) should be.
> >I would not call it a tradition if they aren't,
> >rather that is due to the laziness of most mathematicians
> >and their lack of knowledge about mathematical typography.
>
>   Actually, Johannes Kuester say exactly the same thing as I, except that
> he has misunderstood the terminology I use: I used "variables" to indicate
> anything that may vary, including the "f" in the function "f(x)"; so here
> "f" is not a "function name", but the name of a variable that happens to
> refer to a function.

Okay, but there are constant function names as \mu for Moebius function,
\phi for Euler function (totient) etc., but I think these shouldn't
be set upright. May be the best example for this is \pi(x), when
denoting the prime counting function (thus constant or with a fixed
meaning) versus \pi, the circle number. Here \pi should be set
upright in both cases, according to Hans Aberg, whereas I suggest not
to use the `set in upright rule' to functions, whether constant or variable.

There is another rule here to which most authors/typesetters don't obey
but which reduces the confusion between functions and other symbols: i.e.
using a little space left of a left parenthese, if multiplication is meant;
in TeX notation e.g.
  $f(x)$   function f with argument x
  $f\,(x)$ f times x
(Silly example, but imagine a  more complicated expression instead of `x'
and instead of f a letter `overloaded' with different meanings).

>   The mathematical typesetting traditions are very old, and the typesetters
> substituted fonts and symbols for the mathematicans handwritten symbols; in
> addition, it was costly having many sets of font styles. So it is only
> natural that tradition comes with many simplifications.

Yes, but may be TeX shouldn't just stop in trying to obey to old traditions.
Of course one has to know the traditions, but one also has to consider
how they developed, and I don't think that the TeX community should
confine itself to obey to rules which were mainly established because
of lack of appropriate type. The fear expressed by DEK in the METAFONTbook,
that mathematicians might go out and create their own symbols, hasn't
come true at all. Mathematicians are even too lazy to think of new
symbols in cases where they are badly needed; rather they tend to stick
to old traditions, whether mathematically necessary or not.

Of course, for new symbols, there should be some qualifications,
e.g. they should be international, mnemonic, consistent with the
rules for typesetting, consistent with old symbols in the sense of
not being too different from them (may be) etc.

>   When it comes down to names of constants like "e", "i", "pi", these
> really were "variables" from the beginning, when they were discovered, and
> therefore should be typeset slanted. Nowadays, this is no longer the case,
> being regarded as "constants", and further, any choice of typesetting can
> most easily be achieved using TeX, so why not change it?

Excuse me? I don't think that they ever were variables.
Rather mathematical typography wasn't that developed at that time.
Most of the traditions of mathematical typesetting aren't that old.
(may be we all should go to the library now and have a look and
Euler's `Introductio in Analysin Infinitorum'...)

>   For the same reason vector "variables" are likely to be set in upright
> bold, but why not change it to bold italic, as suggested by the Duden rule?
> (Of course a very pure mathematician would never use bold to indicate a
> vector... :-) )

Setting in bold italic is consistent to the rules (as most vectors are
variables), vectors and their components are more closely tied together
typographically (both in italic, bold and normal), and uppercase
bold italic could be used for matrices then (again consistently).
Bold upright couldn't, as this could be confused with number set symbols.
I think the usage of bold upright is just due to lack of bold italic,
nothing else!
And as for the pure mathematicians: It just depends on context.
I would use bold italic only for vectors in \mathbf{R}^n or \mathbf{C}^n
(n-dimensional real or complex spaces), may be in geometry, too.
It's not useful/needed in e.g. algebra, when all scalars are written in greek
and all vectors in latin: most occuring variables are vectors and
easily recognizable as such, so why treat them specially?

>   There is no reason for always finding short names for such common
> symbols, as such choices are likely to conflict, and as any writer can
> always define new short-hand macros (or using "\let") for any given
> manuscript.

Yes, of course, but standard control sequences do help (e.g. exchanging
files via e-mail, reading other people's TeX sources, composing a
book of articles from many differt authors,...). I think there should be
standards, for math, it could be a package `math.sty', may be with
a lot of options to include control sequences for different branches
of math and with language-specific switches, may be with options
to short some control sequences (silly example: the standard could
be `\numbersetN' to get the symbol for natural numbers, by the option
`numsetshort' one could use \N, and by another option the actual typesetting
of this symbol is determined).

[Upright Greek]
>
>   I think this is already covered by NFSS (at least in text mode): You only
> have to find the fonts.

As they don't exist yet...
It could be treated be NFSS then, of course.

>   Anyway, there seems to be a need for full set of fonts/styles also in
> math mode for all fonts.
>   (Perhaps some expert can help here.)

I've prepared fonts with some of the needed symbols for my private
use, but there still should be this TeXnical working group...

[Slanted Fraktur/Upright Script]

>   Again, there are several subquestions involved here, and proper analyzing
> requires them to be treated separately:
>
>   First, there is the question whether there is a mathematical use for it:
> It fits the idea of "variables" and "constants", and I found that I had a
> use of it, so a I mentioned. So from this point of view, the idea is worth
> to be investigated.

Okay. But I still think usage of italic/slanted and upright type
should be confined to roman type, as it might be confusing rather
than helping with other styles. And that there is no such thing
as slanted Fraktur is IMHO a good tradition, as it would look
disgusting. But may be it could be useful in math...

>   The AMSFonts "Euler script" font is upright, and the TeX "calligraphic"
> font is slanted (but none are very "scripty"), so why not designing a new
> font?

Well, may be that would go against the traditions again...
Besides, the Euler fonts were designed for the `concrete' font family,
and I do dislike them only because of their lack of slanted/upright
distinction. This is badly missing in the concept of the whole
`concrete' math fonts.

Johannes Kuester

--
Johannes Kuester                    [log in to unmask]
Mathematisches Institut der
Technischen Universitaet Muenchen

Top of Message | Previous Page | Permalink

Advanced Options


Options

Log In

Log In

Get Password

Get Password


Search Archives

Search Archives


Subscribe or Unsubscribe

Subscribe or Unsubscribe


Archives

July 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
June 2018
May 2018
April 2018
February 2018
January 2018
December 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
July 2016
April 2016
March 2016
February 2016
January 2016
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
September 2012
August 2012
July 2012
June 2012
May 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
September 2007
August 2007
June 2007
May 2007
March 2007
December 2006
November 2006
October 2006
August 2006
July 2006
June 2006
May 2006
April 2006
March 2006
February 2006
November 2005
October 2005
September 2005
August 2005
May 2005
April 2005
March 2005
November 2004
October 2004
August 2004
July 2004
May 2004
April 2004
March 2004
February 2004
January 2004
December 2003
October 2003
August 2003
July 2003
June 2003
May 2003
April 2003
March 2003
February 2003
January 2003
December 2002
October 2002
September 2002
August 2002
July 2002
June 2002
March 2002
December 2001
October 2001
September 2001
August 2001
July 2001
June 2001
May 2001
April 2001
March 2001
February 2001
January 2001
December 2000
November 2000
October 2000
September 2000
August 2000
July 2000
May 2000
April 2000
March 2000
February 2000
January 2000
December 1999
November 1999
October 1999
September 1999
August 1999
May 1999
April 1999
March 1999
February 1999
January 1999
December 1998
November 1998
October 1998
September 1998
August 1998
July 1998
June 1998
May 1998
April 1998
March 1998
February 1998
January 1998
December 1997
November 1997
October 1997
September 1997
August 1997
July 1997
June 1997
May 1997
April 1997
March 1997
February 1997
January 1997
December 1996

ATOM RSS1 RSS2



LISTSERV.UNI-HEIDELBERG.DE

Universität Heidelberg | Impressum | Datenschutzerklärung

CataList Email List Search Powered by the LISTSERV Email List Manager